LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FIFTH SEMESTER – APRIL 2013

ST 5504/ST 5500 - ESTIMATION THEORY

Date: 08/05/2013 Time: 9:00 - 12:00	Dept. No.	Max. : 100 Marks
PART _ A		
$\mathbf{I}\mathbf{A}\mathbf{A}\mathbf{I} = \mathbf{A}$		
ANSWER ALL THE QUESTIONS:		(10 x 2 = 20)
1. Define Estimator.		
2. What is meant by unbiasedness of estimators?		
3. Define sufficiency.		
4. What is the use of Rao – Blackwell Theorem?		
5. State any four methods of estimation.		
6. Define raw moment of a population.		
7. Define BLUE.		
8. Define Prior Distribution Give an example.		
9. State the Gauss – Markov Model.		

10. Define Consistency.

PART - B

ANSWER ANY FIVE QUESTIONS:

 $(\gamma(0))$ is a continuous function

 $(5 \times 8 = 40)$

- 11. If T_n is a consistent estimator of $\gamma(\theta)$ and $\psi \{\gamma(\theta)\}$ is a continuous function of $\gamma(\theta)$, then show that $\psi(T_n)$ is a consistent estimator of $\psi \{\gamma(\theta)\}$.
- 12. Obtain the MVB estimator for μ in normal population $N(\mu,\sigma^2),$ where σ^2 is known.
- 13. Explain the Minimum Chi-square method.
- 14. Explain about the Bayes' estimator.
- **15.** State and prove the necessary and sufficient condition for a parametric function to be linearly estimable.
- 16. Explain the method of moments.
- 17. State and prove Factorization Theorem.
- **18. Discuss UMVU estimation.**

PART-C

ANSWER ANY TWO QUESTIONS:

$(2 \times 20 = 40)$

19. a. State and prove Cramer – Rao Inequality.

b. Let x_1 , x_2 ,, x_n be a random sample from a normal population.

N(μ ,1). Show that T = (1/n) $\sum x_i^2$ is an unbiased estimator of μ^2 +1 i=1

20. a. State and prove Rao – Blackwell theorem.

- b. Suppose T_1 is an unbiased minimum variance estimate and T_2 is any other estimate with variance σ^2/e . Then prove that the correlation between T_1 and T_2 is \sqrt{e} .
- 21. a. Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators for μ and σ^2 .

b. Establish Chapman – Robbins Inequality and mention its importance.

- 22. a. Explain in detail the Method of Maximum Likelihood Estimation and state its properties.
 - b. Find the MLE for the parameter λ of a Poisson distribution on the basis of a sample of size 'n'. Also find its variance.

\$\$\$\$\$\$\$